Almost Everywhere Convergence of Riesz-Raikov Series
Volume 68 / 1995
Colloquium Mathematicum 68 (1995), 241-248
DOI: 10.4064/cm-68-2-241-248
Abstract
Let T be a d×d matrix with integer entries and with eigenvalues >1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series $∑_{n=1}^{∞} c_n f(T^{n}x)$ converges almost everywhere with respect to Lebesgue measure provided that $∑_{n=1}^{∞} |c_n|^2 log^{2}n < ∞$.