A remark on a modified Szász-Mirakjan operator
Volume 79 / 1999
Colloquium Mathematicum 79 (1999), 157-160
DOI: 10.4064/cm-79-2-157-160
Abstract
We prove that, for a sequence of positive numbers δ(n), if $n^{1/2}δ(n)\not\to\infty$ as $n\to\infty$, to guarantee that the modified Szász-Mirakjan operators $S_{n,δ}(f,x)$ converge to f(x) at every point, f must be identically zero.