Invariants and flow geometry
Volume 81 / 1999
Abstract
We continue the study of Riemannian manifolds (M,g) equipped with an isometric flow generated by a unit Killing vector field ξ. We derive some new results for normal and contact flows and use invariants with respect to the group of ξ-preserving isometries to charaterize special (M,g,ℱ_ξ), in particular Einstein, η-Einstein, η-parallel and locally Killing-transversally symmetric spaces. Furthermore, we introduce curvature homogeneous flows and flow model spaces and derive an algebraic characterization of Killing-transversally symmetric spaces by using the curvature tensor of special flow model spaces. All these results extend the corresponding theory in Sasakian geometry to flow geometry.