A+ CATEGORY SCIENTIFIC UNIT

Polynomial algebra of constants of the Lotka-Volterra system

Volume 81 / 1999

Jean Moulin Ollagnier, Andrzej Nowicki Colloquium Mathematicum 81 (1999), 263-270 DOI: 10.4064/cm-81-2-263-270

Abstract

Let k be a field of characteristic zero. We describe the kernel of any quadratic homogeneous derivation d:k[x,y,z] → k[x,y,z] of the form $d = x(Cy+z)\frac{∂}{∂x} + y(Az+x)\frac{∂}{∂y} + z(Bx+y)\frac{∂}{∂z}$, called the Lotka-Volterra derivation, where A,B,C ∈ k.

Authors

  • Jean Moulin Ollagnier
  • Andrzej Nowicki

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image