A geometric estimate for a periodic Schrödinger operator
Volume 83 / 2000
Colloquium Mathematicum 83 (2000), 209-216
DOI: 10.4064/cm-83-2-209-216
Abstract
We estimate from below by geometric data the eigenvalues of the periodic Sturm-Liouville operator $-4{d^2}/{ds^2} + κ^2(s)$ with potential given by the curvature of a closed curve.