A+ CATEGORY SCIENTIFIC UNIT

On a conjecture of Mąkowski and Schinzel concerning the composition of the arithmetic functions σ and ϕ

Volume 86 / 2000

A. Grytczuk, F. Luca, M. Wójtowicz Colloquium Mathematicum 86 (2000), 31-36 DOI: 10.4064/cm-86-1-31-36

Abstract

For any positive integer n let ϕ(n) and σ(n) be the Euler function of n and the sum of divisors of n, respectively. In [5], Mąkowski and Schinzel conjectured that the inequality σ(ϕ(n)) ≥ n/2 holds for all positive integers n. We show that the lower density of the set of positive integers satisfying the above inequality is at least 0.74.

Authors

  • A. Grytczuk
  • F. Luca
  • M. Wójtowicz

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image