A+ CATEGORY SCIENTIFIC UNIT

Some remarks on quasi-Cohen sets

Volume 89 / 2001

Pascal Lefèvre, Daniel Li Colloquium Mathematicum 89 (2001), 169-178 MSC: 42A20, 42A55, 42C10, 43A46, 43A77. DOI: 10.4064/cm89-2-2

Abstract

We are interested in Banach space geometry characterizations of quasi-Cohen sets. For example, it turns out that they are exactly the subsets $E$ of the dual of an abelian compact group $G$ such that the canonical injection $C(G)/C_{E^{\rm c}}(G)\hookrightarrow L^2_E(G)$ is a $2$-summing operator. This easily yields an extension of a result due to S. Kwapień and A. Pełczyński. We also investigate some properties of translation invariant quotients of $L^1$ which are isomorphic to subspaces of $L^1$.

Authors

  • Pascal LefèvreFaculté Jean Perrin
    Université d'Artois
    rue Jean Souvraz S.P. 18
    62307 Lens Cedex, France
    e-mail
  • Daniel LiFaculté Jean Perrin
    Université d'Artois
    rue Jean Souvraz S.P. 18
    62307 Lens Cedex
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image