Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Spectral subspaces and non-commutative Hilbert transforms

Volume 91 / 2002

Narcisse Randrianantoanina Colloquium Mathematicum 91 (2002), 9-27 MSC: 46L52, 47B10, 22D25. DOI: 10.4064/cm91-1-2

Abstract

Let be a locally compact abelian group and {\mathcal M} be a semifinite von Neumann algebra with a faithful semifinite normal trace \tau . We study Hilbert transforms associated with G-flows on {\mathcal M} and closed semigroups {\mit\Sigma } of \widehat G satisfying the condition {\mit\Sigma } \cup (-{\mit\Sigma })=\widehat {G}. We prove that Hilbert transforms on such closed semigroups satisfy a weak-type estimate and can be extended as linear maps from L^1({\mathcal M},\tau ) into L^{1,\infty }({\mathcal M}, \tau ). As an application, we obtain a Matsaev-type result for p=1: if x is a quasi-nilpotent compact operator on a Hilbert space and \mathop {\rm Im}\nolimits (x) belongs to the trace class then the singular values \{\mu _n(x)\}_{n=1}^\infty of x are O(1/n).

Authors

  • Narcisse RandrianantoaninaDepartment of Mathematics and Statistics
    Miami University
    Oxford, OH 45056, U.S.A.
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image