Liftings of 1-forms to $(J^rT^*)^*$
Volume 91 / 2002
                    
                    
                        Colloquium Mathematicum 91 (2002), 69-77                    
                                        
                        MSC: 58A20, 53A55.                    
                                        
                        DOI: 10.4064/cm91-1-5                    
                                    
                                                Abstract
Let $J^rT^*M$ be the $r$-jet prolongation of the cotangent bundle of an $n$-dimensional manifold $M$ and let $(J^rT^*M)^*$ be the dual vector bundle. For natural numbers $r$ and $n$, a complete classification of all linear natural operators lifting $1$-forms from $M$ to $1$-forms on $(J^rT^*M)^*$ is given.
 
             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                         
                                                            