A+ CATEGORY SCIENTIFIC UNIT

Dense range perturbations of hypercyclic operators

Volume 91 / 2002

Luis Bernal-Gonzalez Colloquium Mathematicum 91 (2002), 283-292 MSC: Primary 47A16; Secondary 46A03, 47A05, 47A55. DOI: 10.4064/cm91-2-7

Abstract

We show that if $(T_n)$ is a hypercyclic sequence of linear operators on a locally convex space and $(S_n)$ is a sequence of linear operators such that the image of each orbit under every linear functional is non-dense then the sequence $(T_n + S_n)$ has dense range. Furthermore, it is proved that if $T,S$ are commuting linear operators in such a way that $T$ is hypercyclic and all orbits under $S$ satisfy the above non-denseness property then $T - S$ has dense range. Corresponding statements for operators and sequences which are hypercyclic in a weaker sense are shown. Our results extend and improve a result on denseness due to C. Kitai.

Authors

  • Luis Bernal-GonzalezDepartamento de Análisis Matemático
    Facultad de Matemáticas
    Universidad de Sevilla
    Apdo. 1160, Avenida Reina Mercedes
    41080 Sevilla, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image