Cohen–Macaulayness of multiplication rings and modules
Volume 95 / 2003
Colloquium Mathematicum 95 (2003), 133-138
MSC: 13C14, 13E05.
DOI: 10.4064/cm95-1-11
Abstract
Let $R$ be a commutative multiplication ring and let $N$ be a non-zero finitely generated multiplication $R$-module. We characterize certain prime submodules of $N$. Also, we show that $N$ is Cohen–Macaulay whenever $R$ is Noetherian.