A+ CATEGORY SCIENTIFIC UNIT

A sharp bound for a sine polynomial

Volume 96 / 2003

Horst Alzer, Stamatis Koumandos Colloquium Mathematicum 96 (2003), 83-91 MSC: Primary 26D05, 42A05; Secondary 26D15. DOI: 10.4064/cm96-1-8

Abstract

We prove that $$ \left|\sum_{k=1}^{n}\frac{\sin((2k-1)x)}{k}\right| < {\rm Si}(\pi)=1.8519\dots $$ for all integers $n\geq 1$ and real numbers $x$. The upper bound ${\rm Si}(\pi)$ is best possible. This result refines inequalities due to Fejér (1910) and Lenz (1951).

Authors

  • Horst AlzerMorsbacher Str. 10
    51545 Waldbröl, Germany
    e-mail
  • Stamatis KoumandosDepartment of Mathematics and Statistics
    The University of Cyprus
    P.O. Box 20537
    1678 Nicosia, Cyprus
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image