A+ CATEGORY SCIENTIFIC UNIT

On fractional sum of the von Mangoldt function

Xiaodong Lü, Xinyue Xu Colloquium Mathematicum MSC: Primary 11N37; Secondary 11L07 DOI: 10.4064/cm9418-10-2024 Published online: 2 December 2024

Abstract

Let $\Lambda (n)$ be the von Mangoldt function, and let $[t]$ be the integral part of real number $t$. We prove the asymptotic formula \[ \sum _{n\le x}\Lambda \left(\left[ \frac{x}{n}\right]\right) =x\sum _{d=1}^\infty \frac{\Lambda (d)}{d(d+1)}+O( x^{22/47+\varepsilon })\quad\ \text{for any $\varepsilon \gt 0$.} \]

Authors

  • Xiaodong LüSchool of Mathematical Science
    Yangzhou University
    Yangzhou, Jiangsu, 225002, P. R. China
    e-mail
  • Xinyue XuSchool of Mathematical Science
    Yangzhou University
    Yangzhou, Jiangsu, 225002, P. R. China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image