A+ CATEGORY SCIENTIFIC UNIT

La structure des sous-espaces de treillis

Volume 397 / 2001

José L. Marcolino Nhani Dissertationes Mathematicae 397 (2001), 1-50 MSC: 46B20, 46B42, 47B10, 46B07. DOI: 10.4064/dm397-0-1

Abstract

We study some geometrical properties of a new structure introduced by G. Pisier: the structure of lattice subspaces. We show first that if $X$ and $Y$ are Banach lattices such that $B_{\rm r}(X,Y)=B(X,Y)$, then $X$ is an $AL$-space or $Y$ is an $AM$-space. We introduce the notion of homogeneous lattice subspace and we show that up to regular isomorphism, the only homogeneous lattice subspace of $L^{p}({\mit\Omega},\mu)$, for $2\leq p<\infty$, is $G(I)$. We also show a version of the Dvoretzky theorem for this structure. We end this paper by giving an estimate of the regular Banach–Mazur distance between some finite-dimensional lattice subspaces.

Authors

  • José L. Marcolino NhaniDépartement de Mathématiques
    Université de Franche-Comté
    16, Route de Gray
    25030 Besançon Cedex, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image