A+ CATEGORY SCIENTIFIC UNIT

Every separable Banach space has a basis with uniformly controlled permutations

Volume 439 / 2006

Paolo Terenzi Dissertationes Mathematicae 439 (2006), 1-177 MSC: 46B15, 46B20. DOI: 10.4064/dm439-0-1

Abstract

There exists a universal control sequence $\{ \overline{p}( m)\} _{m=1}^{\infty }$ of increasing positive integers such that: Every infinite-dimensional separable Banach space $X$ has a biorthogonal system $\{ x_{n},x_{n}^{\ast }\} $ with $% \|x_{n}\|=1 $ and $\|x_{n}^{\ast }\|

Authors

  • Paolo TerenziDipartimento di Matematica “Francesco Brioschi”
    del Politecnico di Milano
    Piazza Leonardo Da Vinci 32
    20133 Milano, Italy
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image