Every separable Banach space has a basis with uniformly controlled permutations
Volume 439 / 2006
Dissertationes Mathematicae 439 (2006), 1-177
MSC: 46B15, 46B20.
DOI: 10.4064/dm439-0-1
Abstract
There exists a universal control sequence $\{ \overline{p}(
m)\} _{m=1}^{\infty }$ of increasing positive integers such
that: Every infinite-dimensional separable Banach space $X$ has a
biorthogonal system $\{ x_{n},x_{n}^{\ast }\} $ with $%
\|x_{n}\|=1 $ and $\|x_{n}^{\ast }\|