Weak Wecken's theorem for periodic points in dimension 3
Volume 180 / 2003
Fundamenta Mathematicae 180 (2003), 223-239
MSC: Primary 55M20.
DOI: 10.4064/fm180-3-2
Abstract
We prove that a self-map $f : M \to M$ of a compact PL-manifold of dimension $\ge 3 $ is homotopic to a map with no periodic points of period $n$ iff the Nielsen numbers $N(f^k)$ for $k$ dividing $n$ all vanish. This generalizes the result from \cite{JeAnn} to dimension $3$.