Goldstern–Judah–Shelah preservation theorem for countable support iterations
Volume 144 / 1994
Abstract
[1] T. Bartoszyński, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), 209-213. [2] T. Bartoszyński and H. Judah, Measure and Category, in preparation. [3] D. H. Fremlin, Cichoń's diagram, Publ. Math. Univ. Pierre Marie Curie 66, Sém. Initiation Anal., 1983/84, Exp. 5, 13 pp. [4] M. Goldstern, Tools for your forcing construction, in: Set Theory of the Reals, Conference of Bar-Ilan University, H. Judah (ed.), Israel Math. Conf. Proc. 6, 1992, 307-362. [5] H. Judah and M. Repický, No random reals in countable support iterations, preprint. [6] H. Judah and S. Shelah, The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing), J. Symbolic Logic 55 (1990), 909-927. [7] A. W. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93-114. [8] J. Pawlikowski, Why Solovay real produces Cohen real, J. Symbolic Logic 51 (1986), 957-968. [9] J. Raisonnier and J. Stern, The strength of measurability hypotheses, Israel J. Math. 50 (1985), 337-349. [10] M. Repický, Properties of measure and category in generalized Cohen's and Silver's forcing, Acta Univ. Carol. - Math. Phys. 28 (1987), 101-115. [11] S. Shelah, Proper Forcing, Springer, Berlin, 1984. [12] J. Truss, Sets having caliber $ℵ_1$, in: Logic Colloquium 76, Stud. Logic Found. Math. 87, North-Holland, 1977, 595-612.