Sur les rétractes absolus $P_n$ -valués de dimension finie
Volume 158 / 1998
Fundamenta Mathematicae 158 (1998), 241-248
DOI: 10.4064/fm-158-3-241-248
Abstract
We prove that a k-dimensional hereditarily indecomposable metrisable continuum is not a $P_k$-valued absolute retract. We deduce from this that none of the classical characterizations of ANR (metric) extends to the class of stratifiable spaces.