A+ CATEGORY SCIENTIFIC UNIT

Bohr compactifications of discrete structures

Volume 160 / 1999

Joan E. Hart, Kenneth Kunen Fundamenta Mathematicae 160 (1999), 101-151 DOI: 10.4064/fm_1999_160_2_1_101_151

Abstract

We prove the following theorem: Given a⊆ω and $1 ≤ α < ω_1^{CK}$, if for some $η < ℵ_1$ and all u ∈ WO of length η, a is $Σ _α^0(u)$, then a is $Σ_α^0$.} We use this result to give a new, forcing-free, proof of Leo Harrington's theorem: {$Σ_1^1 $-Turing-determinacy implies the existence of $0^{#}$}.

Authors

  • Joan E. Hart
  • Kenneth Kunen

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image