Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Homotopy decompositions of orbit spaces and the Webb conjecture

Volume 169 / 2001

Jolanta S/lomi/nska Fundamenta Mathematicae 169 (2001), 105-137 MSC: 55P91, 55U40, 18G10, 18G40. DOI: 10.4064/fm169-2-2

Abstract

Let be a prime number. We prove that if G is a compact Lie group with a non-trivial p-subgroup, then the orbit space (B{\cal A}_p(G))/G of the classifying space of the category associated to the G-poset {\cal A}_p(G) of all non-trivial elementary abelian p-subgroups of G is contractible. This gives, for every G-CW-complex X each of whose isotropy groups contains a non-trivial p-subgroup, a decomposition of X/G as a homotopy colimit of the functor X^{E_n}/(NE_0\cap \mathinner {\ldotp \ldotp \ldotp }\cap NE_n) defined over the poset (\mathop {\rm sd}\nolimits {\cal A}_p(G))/G, where \mathop {\rm sd}\nolimits is the barycentric subdivision. We also investigate some other equivariant homotopy and homology decompositions of X and prove that if G is a compact Lie group with a non-trivial p-subgroup, then the map EG\times _G B{\cal A}_p(G)\to BG induced by the G-map B{\cal A}_p(G)\to * is a mod p homology isomorphism.

Authors

  • Jolanta S/lomi/nskaFaculty of Mathematics and Information Sciences
    Technical University of Warsaw
    Pl. Politechniki 1
    00-661 Warszawa, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image