On the number of countable models of stable theories
Volume 169 / 2001
Fundamenta Mathematicae 169 (2001), 139-144
MSC: Primary 03C45; Secondary 03C15.
DOI: 10.4064/fm169-2-3
Abstract
We prove:
Theorem. If $T$ is a countable, complete, stable, first-order theory having an infinite set of constants with different interpretations, then $I(T,\aleph _{0}) \ge \aleph _{0}$.