Categoricity of theories in $L_{\kappa ^*, \omega }$, when $\kappa ^*$ is a measurable cardinal. Part 2
Volume 170 / 2001
Fundamenta Mathematicae 170 (2001), 165-196
MSC: 03C25, 03C75, 03C20.
DOI: 10.4064/fm170-1-10
Abstract
We continue the work of [2] and prove that for $\lambda $ successor, a $\lambda $-categorical theory ${\bf T}$ in $L_{\kappa ^*,\omega }$ is $\mu $-categorical for every $\mu \leq \lambda $ which is above the $(2^{{\rm LS}({\bf T})})^+$-beth cardinal.