A+ CATEGORY SCIENTIFIC UNIT

Une formule pour les extensions de foncteurs composés

Volume 177 / 2003

Alain Troesch Fundamenta Mathematicae 177 (2003), 55-82 MSC: 18G05, 18G10, 18G15, 18G40, 55S10. DOI: 10.4064/fm177-1-4

Abstract

Let $p$ be a prime, and let ${\cal F}$ be the category of functors from the finite $\Bbb F_p$-vector spaces to all $\Bbb F_p$-vector spaces. The object $\rm Id$ of ${\cal F}$ is the inclusion functor. Let $F$ and $G$ be two objects in ${\cal F}$. If $F$ and $G$ satisfy suitable conditions, the main result of this paper allows one to compute $\mathop{{\rm Ext}}_{\cal F}^*(\mathop{{\rm Id}},G \circ F)$ from the knowledge of $\mathop{{\rm Ext}}_{\cal F}^*(\mathop{{\rm Id}},F)$ and $\mathop{{\rm Ext}}_{\cal F}^*(\mathop{{\rm Id}},G)$.

Authors

  • Alain TroeschLAGA, Institut Galilée
    Université Paris 13
    99, avenue J.-B. Clément
    93430 Villetaneuse, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image