Generating varieties for the triple loop space of classical Lie groups
Volume 177 / 2003
Fundamenta Mathematicae 177 (2003), 269-283
MSC: Primary 58D27; Secondary 53C07, 55R40.
DOI: 10.4064/fm177-3-6
Abstract
For or \mathop {\rm Spin}\nolimits (n), let C_G (SU(2)) be the centralizer of a certain SU(2) in G. We have a natural map J: G/C_G (SU(2)) \rightarrow {\mit \Omega }_0^3 G. For a generator \alpha of H_\ast (G/C_G (SU(2)); {{\mathbb Z}}/2), we describe J_\ast (\alpha ). In particular, it is proved that J_\ast : H_\ast (G/C_G (SU(2)); {{\mathbb Z}}/2) \rightarrow H_\ast ({\mit \Omega }_0^3G;{{\mathbb Z}}/2) is injective.