Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

A generating family for the Freudenthal compactification of a class of rimcompact spaces

Volume 178 / 2003

Jesús M. Domínguez Fundamenta Mathematicae 178 (2003), 203-215 MSC: 54D35, 54C40. DOI: 10.4064/fm178-3-2

Abstract

For a Tikhonov space, let F(X) be the algebra of all real-valued continuous functions on X that assume only finitely many values outside some compact subset. We show that F(X) generates a compactification \gamma X of X if and only if X has a base of open sets whose boundaries have compact neighborhoods, and we note that if this happens then \gamma X is the Freudenthal compactification of X. For X Hausdorff and locally compact, we establish an isomorphism between the lattice of all subalgebras of F(X)/C_{\rm K}(X) and the lattice of all compactifications of X with zero-dimensional remainder, the finite-dimensional subalgebras corresponding to the compactifications with finite remainder.

Authors

  • Jesús M. DomínguezDepartamento de Álgebra, Geometría y Topología
    Facultad de Ciencias
    Universidad de Valladolid
    47005 Valladolid, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image