A+ CATEGORY SCIENTIFIC UNIT

The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces

Volume 182 / 2004

Michael G. Charalambous Fundamenta Mathematicae 182 (2004), 41-52 MSC: Primary 54F45; Secondary 54E15, 54E35, 54E52. DOI: 10.4064/fm182-1-2

Abstract

We prove that every Baire subspace $Y$ of $c_0(\mit\Gamma)$ has a dense $G_\delta$ metrizable subspace $X$ with $\dim X \leq \dim Y$. We also prove that the Kimura–Morishita Eberlein compactifications of metrizable spaces preserve large inductive dimension. The proofs rely on new and old results concerning the dimension of uniform spaces.

Authors

  • Michael G. CharalambousDepartment of Mathematics
    University of the Aegean
    83 200, Karlovassi, Samos, Greece
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image