Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces

Volume 182 / 2004

Michael G. Charalambous Fundamenta Mathematicae 182 (2004), 41-52 MSC: Primary 54F45; Secondary 54E15, 54E35, 54E52. DOI: 10.4064/fm182-1-2

Abstract

We prove that every Baire subspace of c_0(\mit\Gamma) has a dense G_\delta metrizable subspace X with \dim X \leq \dim Y. We also prove that the Kimura–Morishita Eberlein compactifications of metrizable spaces preserve large inductive dimension. The proofs rely on new and old results concerning the dimension of uniform spaces.

Authors

  • Michael G. CharalambousDepartment of Mathematics
    University of the Aegean
    83 200, Karlovassi, Samos, Greece
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image