Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

The absolute continuity of the invariant measure of random iterated function systems with overlaps

Volume 210 / 2010

Balázs Bárány, Tomas Persson Fundamenta Mathematicae 210 (2010), 47-62 MSC: Primary 37C40; Secondary 37H15. DOI: 10.4064/fm210-1-2

Abstract

We consider iterated function systems on the interval with random perturbation. Let be uniformly distributed in [1- \varepsilon, 1 + \varepsilon] and let f_i \in C^{1+\alpha} be contractions with fixpoints a_i. We consider the iterated function system \{ Y_\varepsilon f_i + a_i (1 - Y_\varepsilon) \}_{i=1}^n, where each of the maps is chosen with probability p_i. It is shown that the invariant density is in L^2 and its L^2 norm does not grow faster than 1/\sqrt{\varepsilon} as \varepsilon vanishes. The proof relies on defining a piecewise hyperbolic dynamical system on the cube with an SRB-measure whose projection is the density of the iterated function system.

Authors

  • Balázs BárányDepartment of Stochastics
    Institute of Mathematics
    Technical University of Budapest
    P.O. Box 91
    1521 Budapest, Hungary
    e-mail
  • Tomas PerssonInstitute of Mathematics
    Polish Academy of Sciences
    Śniadeckich 8
    P.O. Box 21
    00-956 Warszawa, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image