A+ CATEGORY SCIENTIFIC UNIT

Effective decomposition of $\sigma $-continuous Borel functions

Volume 224 / 2014

Gabriel Debs Fundamenta Mathematicae 224 (2014), 187-202 MSC: Primary 03E15; Secondary 26A21. DOI: 10.4064/fm224-2-4

Abstract

We prove that if a $\varDelta^1_1$ function $f$ with $\varSigma^1_1$ domain $X$ is $\sigma$-continuous then one can find a $\varDelta^1_1$ covering $(A_n)_{n\in \omega}$ of $X$ such that $f_{\vert {A_n}}$ is continuous for all $n$. This is an effective version of a recent result by Pawlikowski and Sabok, generalizing an earlier result of Solecki.

Authors

  • Gabriel DebsAnalyse Fonctionnelle
    Institut Mathématique de Jussieu
    Boîte 186
    4, Place Jussieu
    75252 Paris Cedex 05, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image