Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Calibres, compacta and diagonals

Volume 232 / 2016

Paul Gartside, Jeremiah Morgan Fundamenta Mathematicae 232 (2016), 1-19 MSC: Primary 54E35; Secondary 54D30, 54G20. DOI: 10.4064/fm232-1-1

Abstract

For a space let \mathcal {K}(Z) denote the partially ordered set of all compact subspaces of Z under set inclusion. If X is a compact space, \Delta is the diagonal in X^2, and \mathcal {K}(X^2 \setminus \Delta ) has calibre (\omega _1,\omega ), then X is metrizable. There is a compact space X such that X^2 \setminus \Delta has relative calibre (\omega _1,\omega ) in \mathcal {K}(X^2 \setminus \Delta ), but which is not metrizable. Questions of Cascales et al. (2011) concerning order constraints on \mathcal {K}(A) for every subspace of a space X are answered.

Authors

  • Paul GartsideDepartment of Mathematics
    University of Pittsburgh
    Pittsburgh, PA 15260, U.S.A.
    e-mail
  • Jeremiah MorganDepartment of Mathematics
    University of Pittsburgh
    Pittsburgh, PA 15260, U.S.A.

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image