A+ CATEGORY SCIENTIFIC UNIT

Calibres, compacta and diagonals

Volume 232 / 2016

Paul Gartside, Jeremiah Morgan Fundamenta Mathematicae 232 (2016), 1-19 MSC: Primary 54E35; Secondary 54D30, 54G20. DOI: 10.4064/fm232-1-1

Abstract

For a space $Z$ let $\mathcal {K}(Z)$ denote the partially ordered set of all compact subspaces of $Z$ under set inclusion. If $X$ is a compact space, $\Delta $ is the diagonal in $X^2$, and $\mathcal {K}(X^2 \setminus \Delta )$ has calibre $(\omega _1,\omega )$, then $X$ is metrizable. There is a compact space $X$ such that $X^2 \setminus \Delta $ has relative calibre $(\omega _1,\omega )$ in $\mathcal {K}(X^2 \setminus \Delta )$, but which is not metrizable. Questions of Cascales et al. (2011) concerning order constraints on $\mathcal {K}(A)$ for every subspace of a space $X$ are answered.

Authors

  • Paul GartsideDepartment of Mathematics
    University of Pittsburgh
    Pittsburgh, PA 15260, U.S.A.
    e-mail
  • Jeremiah MorganDepartment of Mathematics
    University of Pittsburgh
    Pittsburgh, PA 15260, U.S.A.

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image