When automorphisms of $\mathcal P(\kappa )/[\kappa ]^{<\aleph _0}$ are trivial off a small set
Volume 235 / 2016
Fundamenta Mathematicae 235 (2016), 167-181
MSC: 03E17, 03E35.
DOI: 10.4064/fm222-2-2016
Published online: 30 May 2016
Abstract
It is shown that if $\kappa \gt 2^{\aleph _0}$ and $\kappa $ is less than the first inaccessible cardinal then every automorphism of $\mathcal P(\kappa )/[\kappa ]^{ \lt \aleph _0}$ is trivial outside of a set of cardinality $2^{\aleph _0}$.