Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Torsion-free abelian groups are consistently -complete

Volume 247 / 2019

Saharon Shelah, Douglas Ulrich Fundamenta Mathematicae 247 (2019), 275-297 MSC: Primary 03C55. DOI: 10.4064/fm673-12-2018 Published online: 12 August 2019

Abstract

Let \mbox{TFAG} be the theory of torsion-free abelian groups. We show that if there is no countable transitive model of \mbox{ZFC}^- + \text{“}\kappa(\omega) exists”, then \mbox{TFAG} is \mathrm{a}\Delta^1_2-complete; in particular, this is consistent with ZFC. We define the \alpha-ary Schröder–Bernstein property, and show that \mbox{TFAG} fails the \alpha-ary Schröder–Bernstein property for every \alpha \lt \kappa(\omega). We leave open whether or not \mbox{TFAG} can have the \kappa(\omega)-ary Schröder–Bernstein property; if it did, then it would not be \mathrm{a} \Delta^1_2-complete, and hence not Borel complete.

Authors

  • Saharon ShelahInstitute of Mathematics
    Hebrew University
    Jerusalem, Israel
    e-mail
  • Douglas UlrichDepartment of Mathematics
    University of California, Irvine
    Irvine, CA 92697, U.S.A.
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image