A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

The descriptive complexity of connectedness in Polish spaces

Volume 249 / 2020

Gabriel Debs, Jean Saint Raymond Fundamenta Mathematicae 249 (2020), 261-286 MSC: Primary 03E15, 28A05, 54D05; Secondary 54H05. DOI: 10.4064/fm754-7-2019 Published online: 20 December 2019

Abstract

We investigate the descriptive complexity of connectedness (and also pathwise connectedness and local connectedness) of Polish spaces, and prove that even in the framework of finite-dimensional euclidean spaces this complexity can be the highest possible, and much beyond the first projective classes $\boldsymbol{\Sigma}^1_1 $ and $\boldsymbol{\Pi}^1_1 $. In particular we prove that several of these notions are $\boldsymbol{\Pi}^1_2 $-complete.

Authors

  • Gabriel DebsSorbonne Université
    Université Paris Diderot, CNRS
    Institut de Mathématiques de Jussieu – Paris Rive Gauche, IMJ-PRG
    4 place Jussieu
    F-75252 Paris, France
    and
    Université Le Havre Normandie
    Institut Universitaire de Technologie
    Rue Boris Vian, BP 4006
    76610 Le Havre, France
    e-mail
  • Jean Saint RaymondSorbonne Université
    Université Paris Diderot, CNRS
    Institut de Mathématiques de Jussieu – Paris Rive Gauche, IMJ-PRG
    4 place Jussieu
    F-75252 Paris, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image