A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Monotone normality and nabla products

Volume 254 / 2021

Hector A. Barriga-Acosta, Paul M. Gartside Fundamenta Mathematicae 254 (2021), 99-120 MSC: Primary 03E75, 54A35, 54B10, 54D15, 54D20; Secondary 54A25, 54B99, 54G20, 54G99. DOI: 10.4064/fm926-10-2020 Published online: 23 December 2020

Abstract

Roitman’s combinatorial principle $\Delta $ is equivalent to monotone normality of the nabla product, $\nabla (\omega +1)^\omega $. If $\{ X_n : n\in \omega \}$ is a family of metrizable spaces and $\nabla _n X_n$ is monotonically normal, then $\nabla _n X_n$ is hereditarily paracompact. Hence, if $\Delta $ holds then the box product $\square (\omega +1)^\omega $ is paracompact. Large fragments of $\Delta $ hold in $\mathsf {ZFC}$, yielding large subspaces of $\nabla (\omega +1)^\omega $ that are ‘really’ monotonically normal. Countable nabla products of metrizable spaces which are respectively: arbitrary, of size $\le \mathfrak {c}$, or separable, are monotonically normal under respectively: $\mathfrak {b}=\mathfrak {d}$, $\mathfrak {d}=\mathfrak {c}$ or the Model Hypothesis.

It is consistent and independent that $\nabla A(\omega _1)^\omega $ and $\nabla (\omega _1+1)^\omega $ are hereditarily normal (or hereditarily paracompact, or monotonically normal). In $\mathsf {ZFC}$ neither $\nabla A(\omega _2)^\omega $ nor $\nabla (\omega _2+1)^\omega $ is hereditarily normal.

Authors

  • Hector A. Barriga-AcostaPosgrado Conjunto en Ciencias Matemáticas
    UMSNH-UNAM
    Morelia, Mexico
    e-mail
  • Paul M. GartsideDepartment of Mathematics
    University of Pittsburgh
    Pittsburgh, PA, U.S.A.
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image