A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Constructions of Lindelöf scattered P-spaces

Volume 259 / 2022

Juan Carlos Martínez, Lajos Soukup Fundamenta Mathematicae 259 (2022), 271-286 MSC: Primary 54A25; Secondary 54A35, 54D20, 54G10, 54G12, 03E05. DOI: 10.4064/fm228-7-2022 Published online: 20 September 2022

Abstract

We construct locally Lindelöf scattered P-spaces (LLSP spaces, for short) with prescribed widths and heights under different set-theoretic assumptions.

We prove that there is an LLSP space of width $\omega _1$ and height $\omega _2$ and that it is relatively consistent with ZFC that there is an LLSP space of width $\omega _1$ and height $\omega _3$. Also, we prove a stepping up theorem which, for every cardinal $\lambda \geq \omega _2$, permits us to construct from an LLSP space of width $\omega _1$ and height $\lambda $ satisfying certain additional properties an LLSP space of width $\omega _1$ and height $\alpha $ for every ordinal $\alpha \lt \lambda ^+$. As consequences of the above results, we obtain the following theorems:

(1) For every ordinal $\alpha \lt \omega _3$ there is an LLSP space of width $\omega _1$ and height $\alpha $.

(2) It is relatively consistent with ZFC that there is an LLSP space of width $\omega _1$ and height $\alpha $ for every ordinal $\alpha \lt \omega _4$.

Authors

  • Juan Carlos MartínezFacultat de Matemàtiques i Informàtica
    Universitat de Barcelona
    Gran Via 585
    08007 Barcelona, Spain
    e-mail
  • Lajos SoukupAlfréd Rényi Institute of Mathematics
    Reáltanoda u. 13-15
    1053 Budapest, Hungary
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image