A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Belinskaya’s theorem is optimal

Volume 263 / 2023

Alessandro Carderi, Matthieu Joseph, François Le Maître, Romain Tessera Fundamenta Mathematicae 263 (2023), 51-90 MSC: Primary 37A05; Secondary 37A15. DOI: 10.4064/fm266-4-2023 Published online: 10 July 2023

Abstract

Belinskaya’s theorem states that given an ergodic measure-preserving transformation, any other transformation with the same orbits and an L$^1$ cocycle must be flip-conjugate to it. Our main result shows that this theorem is optimal: for all $p \lt 1$ the integrability condition on the cocycle cannot be relaxed to being in L$^p$. This also allows us to answer a question of Kerr and Li: for ergodic measure-preserving transformations, Shannon orbit equivalence does not boil down to flip-conjugacy.

Authors

  • Alessandro CarderiInstitut für Algebra und Geometrie
    Fakultät für Mathematik
    Karlsruher Institut für Technologie
    76131 Karlsruhe, Germany
    e-mail
  • Matthieu JosephUniversité Paris-Saclay, CNRS
    Laboratoire de mathématiques d’Orsay
    91405 Orsay, France
    e-mail
  • François Le MaîtreUniversité Paris Cité and Sorbonne Université
    CNRS, IMJ-PRG
    75013 Paris, France
    e-mail
  • Romain TesseraUniversité Paris Cité and Sorbonne Université
    CNRS, IMJ-PRG
    75013 Paris, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image