Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Rosenthal compacta that are premetric of finite degree

Volume 239 / 2017

Antonio Avilés, Alejandro Poveda, Stevo Todorcevic Fundamenta Mathematicae 239 (2017), 259-278 MSC: 26A21, 54H05, 54D30, 05D10. DOI: 10.4064/fm333-12-2016 Published online: 5 June 2017

Abstract

We show that if a separable Rosenthal compactum is a continuous n-to-one preimage of a metric compactum, but it is not a continuous n-1-to-one preimage, then K contains a closed subset homeomorphic to either the n-split interval S_n(I) or the Alexandroff n-plicate D_n(2^{\mathbb N}). This generalizes a result of the third author that corresponds to the case n=2.

Authors

  • Antonio AvilésDepartamento de Matemáticas
    Universidad de Murcia
    30100 Murcia, Spain
    e-mail
  • Alejandro PovedaDepartament de Matemàtiques i Informàtica
    Universitat de Barcelona
    Gran Via de les Corts Catalanes 585
    08007 Barcelona, Spain
    e-mail
  • Stevo TodorcevicDepartment of Mathematics
    University of Toronto
    M5S 3G3 Toronto, Canada
    and
    Institut de Mathématiques de Jussieu
    CNRS UMR 7586 Case 247
    4 Place Jussieu
    75252 Paris, France
    e-mail
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image