Fréchet quotients of spaces of real-analytic functions
Volume 159 / 2003
Studia Mathematica 159 (2003), 229-245
MSC: Primary 46E10; Secondary 46A04, 46A45, 46A63.
DOI: 10.4064/sm159-2-5
Abstract
We characterize all Fréchet quotients of the space ${\scr A} ({\mit \Omega })$ of (complex-valued) real-analytic functions on an arbitrary open set ${\mit \Omega }\subseteq \mathbb R^d$. We also characterize those Fréchet spaces $E$ such that every short exact sequence of the form $0\to E \to X \to {\scr A} ({\mit \Omega }) \to 0$ splits.