Selections and representations of multifunctions in paracompact spaces
Volume 102 / 1992
Studia Mathematica 102 (1992), 209-216
DOI: 10.4064/sm-102-3-209-216
Abstract
Let (X,T) be a paracompact space, Y a complete metric space, $F:X → 2^Y$ a lower semicontinuous multifunction with nonempty closed values. We prove that if $T^+$ is a (stronger than T) topology on X satisfying a compatibility property, then F admits a $T^+$-continuous selection. If Y is separable, then there exists a sequence $(f_n)$ of $T^+$-continuous selections such that $F(x)=\overline{{f_n(x);n ≥ 1}}$ for all x ∈ X. Given a Banach space E, the above result is then used to construct directionally continuous selections on arbitrary subsets of ℝ × E.