Topological tensor products of a Fréchet-Schwartz space and a Banach space
Volume 106 / 1993
Studia Mathematica 106 (1993), 189-196
DOI: 10.4064/sm-106-2-189-196
Abstract
We exhibit examples of countable injective inductive limits E of Banach spaces with compact linking maps (i.e. (DFS)-spaces) such that $E ⊗_{ε} X$ is not an inductive limit of normed spaces for some Banach space X. This solves in the negative open questions of Bierstedt, Meise and Hollstein. As a consequence we obtain Fréchet-Schwartz spaces F and Banach spaces X such that the problem of topologies of Grothendieck has a negative answer for $F ⨶_π X$. This solves in the negative a question of Taskinen. We also give examples of Fréchet-Schwartz spaces and (DFS)-spaces without the compact approximation property and with the compact approximation property but without the approximation property.