A+ CATEGORY SCIENTIFIC UNIT

On the best constant in the Khinchin-Kahane inequality

Volume 109 / 1994

Rafał Latała, Studia Mathematica 109 (1994), 101-104 DOI: 10.4064/sm-109-1-101-104

Abstract

We prove that if $r_i$ is the Rademacher system of functions then $(ʃ ∥∑_{i=1}^{n} x_{i}r_{i}(t)∥^2 dt)^{1/2} ≤ √2 ʃ ∥∑_{i=1}^{n}x_{i}r_{i}(t)∥dt$ for any sequence of vectors $x_i$ in any normed linear space F.

Authors

  • Rafał Latała

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image