$L^p$ weighted inequalities for the dyadic square function
Volume 115 / 1995
Studia Mathematica 115 (1995), 135-149
DOI: 10.4064/sm-115-2-135-149
Abstract
We prove that $ʃ(S_df)^pVdx ≤ C_{p,n}ʃ |f|^p M_d^{([p/2]+2)}Vdx$, where $S_d$ is the dyadic square function, $M_d^{(k)}$ is the k-fold application of the dyadic Hardy-Littlewood maximal function and p > 2.