A+ CATEGORY SCIENTIFIC UNIT

On approach regions for the conjugate Poisson integral and singular integrals

Volume 120 / 1996

S. Ferrando, , Studia Mathematica 120 (1996), 169-182 DOI: 10.4064/sm-120-2-169-182

Abstract

Let ũ denote the conjugate Poisson integral of a function $f ∈ L^{p}(ℝ)$. We give conditions on a region Ω so that $lim_{(v,ε)→(0,0)}_{(v,ε)∈Ω} ũ(x+v,ε) = Hf(x)$, the Hilbert transform of f at x, for a.e. x. We also consider more general Calderón-Zygmund singular integrals and give conditions on a set Ω so that $sup_{(v,r)∈Ω} |ʃ_{|t|>r} k(x+v-t)f(t)dt|$ is a bounded operator on $L^p$, 1 < p < ∞, and is weak (1,1).

Authors

  • S. Ferrando


Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image