A+ CATEGORY SCIENTIFIC UNIT

Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces

Volume 128 / 1998

D. E. Edmunds Studia Mathematica 128 (1998), 71-102 DOI: 10.4064/sm-128-1-71-102

Abstract

Let id be the natural embedding of the Sobolev space $W_p^l(Ω)$ in the Zygmund space $L_q(log L)_a(Ω)$, where $Ω = (0,1)^n$, 1 < p < ∞, l ∈ ℕ, 1/p = 1/q + l/n and a < 0, a ≠ -l/n. We consider the entropy numbers $e_k(id)$ of this embedding and show that $e_k(id) ≍ k^{-η}$, where η = min(-a,l/n). Extensions to more general spaces are given. The results are applied to give information about the behaviour of the eigenvalues of certain operators of elliptic type.

Authors

  • D. E. Edmunds

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image