Dominated ergodic theorems in rearrangement invariant spaces
Volume 128 / 1998
Studia Mathematica 128 (1998), 145-157
DOI: 10.4064/sm-128-2-145-157
Abstract
We study conditions under which Dominated Ergodic Theorems hold in rearrangement invariant spaces. Consequences for Orlicz and Lorentz spaces are given. In particular, our results generalize the classical theorems for the spaces $L_p$ and the classes $L log^nL$.