A+ CATEGORY SCIENTIFIC UNIT

An upper bound for the distance to finitely generated ideals in Douglas algebras

Volume 148 / 2001

Pamela Gorkin, Raymond Mortini, Daniel Suárez Studia Mathematica 148 (2001), 23-36 MSC: 46J15, 46J20. DOI: 10.4064/sm148-1-3

Abstract

Let $f$ be a function in the Douglas algebra $A$ and let $I$ be a finitely generated ideal in $A$. We give an estimate for the distance from $f$ to $I$ that allows us to generalize a result obtained by Bourgain for $H^\infty $ to arbitrary Douglas algebras.

Authors

  • Pamela GorkinDepartment of Mathematics
    Bucknell University
    Lewisburg, PA 17837, U.S.A.
    e-mail
  • Raymond MortiniDépartement de Mathématiques
    Université de Metz
    Ile du Saulcy
    F-57045 Metz, France
    e-mail
  • Daniel SuárezDepartamento de Matemática
    Facultad de Cs. Exactas y Naturales
    UBA, Pab. I, Ciudad Universitaria
    (1428) Núñez, Capital Federal, Argentina
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image