Generalized non-commutative tori
Volume 149 / 2002
Abstract
The generalized non-commutative torus of rank n is defined by the crossed product A_{{m}/{k}} \times _{\alpha _3} {\mathbb Z} \times _{\alpha _4}\dots\times _{\alpha _n} {\mathbb Z}, where the actions \alpha _i of {\mathbb Z} on the fibre M_k({\mathbb C}) of a rational rotation algebra A_{{m}/{k}} are trivial, and C^*(k{\mathbb Z} \times k{\mathbb Z}) \times _{\alpha _3} {\mathbb Z} \times _{\alpha _4}\dots\times _{\alpha _n} {\mathbb Z} is a non-commutative torus A_{\varrho }. It is shown that T^k_{\varrho } is strongly Morita equivalent to A_{\varrho }, and that T_{\varrho }^{k} \otimes M_{p^{\infty }} is isomorphic to A_{\varrho } \otimes M_{k}({\mathbb C}) \otimes M_{p^{\infty }} if and only if the set of prime factors of k is a subset of the set of prime factors of p.