Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Generalized non-commutative tori

Volume 149 / 2002

Chun-Gil Park Studia Mathematica 149 (2002), 101-108 MSC: Primary 46L05, 46L87. DOI: 10.4064/sm149-2-1

Abstract

The generalized non-commutative torus of rank n is defined by the crossed product A_{{m}/{k}} \times _{\alpha _3} {\mathbb Z} \times _{\alpha _4}\dots\times _{\alpha _n} {\mathbb Z}, where the actions \alpha _i of {\mathbb Z} on the fibre M_k({\mathbb C}) of a rational rotation algebra A_{{m}/{k}} are trivial, and C^*(k{\mathbb Z} \times k{\mathbb Z}) \times _{\alpha _3} {\mathbb Z} \times _{\alpha _4}\dots\times _{\alpha _n} {\mathbb Z} is a non-commutative torus A_{\varrho }. It is shown that T^k_{\varrho } is strongly Morita equivalent to A_{\varrho }, and that T_{\varrho }^{k} \otimes M_{p^{\infty }} is isomorphic to A_{\varrho } \otimes M_{k}({\mathbb C}) \otimes M_{p^{\infty }} if and only if the set of prime factors of k is a subset of the set of prime factors of p.

Authors

  • Chun-Gil ParkDepartment of Mathematics
    Chungnam National University
    Taejon 305-764, South Korea
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image