A+ CATEGORY SCIENTIFIC UNIT

Dual spaces generated by the interior of the set of norm attaining functionals

Volume 149 / 2002

Maria D. Acosta, Julio Becerra Guerrero, Manuel Ruiz Galán Studia Mathematica 149 (2002), 175-183 MSC: 46B10, 46B04. DOI: 10.4064/sm149-2-6

Abstract

We characterize some isomorphic properties of Banach spaces in terms of the set of norm attaining functionals. The main result states that a Banach space is reflexive as soon as it does not contain $\ell _1$ and the dual unit ball is the $w^\ast $-closure of the convex hull of elements contained in the “uniform” interior of the set of norm attaining functionals. By assuming a very weak isometric condition (lack of roughness) instead of not containing $\ell _1$, we also obtain a similar result. As a consequence of the first result, a convex-transitive Banach space not containing $\ell _1$ and such that the set of norm attaining functionals has nonempty interior is in fact superreflexive.

Authors

  • Maria D. AcostaDepartamento de Análisis Matemático
    Facultad de Ciencias
    Universidad de Granada
    18071 Granada, Spain
    e-mail
  • Julio Becerra GuerreroDepartamento de Matemática Aplicada
    E.U. Arquitectura Técnica
    Universidad de Granada
    18071 Granada, Spain
    e-mail
  • Manuel Ruiz GalánDepartamento de Matemática Aplicada
    E.U. Arquitectura Técnica
    Universidad de Granada
    18071 Granada, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image