A+ CATEGORY SCIENTIFIC UNIT

Unital strongly harmonic commutative Banach algebras

Volume 149 / 2002

Janko Bračič Studia Mathematica 149 (2002), 253-266 MSC: Primary 46J05, 46H25; Secondary 47B40, 47B48. DOI: 10.4064/sm149-3-3

Abstract

A unital commutative Banach algebra ${\cal A}$ is spectrally separable if for any two distinct non-zero multiplicative linear functionals $ \varphi $ and $ \psi $ on it there exist $ a $ and $ b $ in $ {\cal A}$ such that $ ab=0 $ and $ \varphi (a)\psi (b)\not =0. $ Spectrally separable algebras are a special subclass of strongly harmonic algebras. We prove that a unital commutative Banach algebra ${\cal A}$ is spectrally separable if there are enough elements in $ {\cal A}$ such that the corresponding multiplication operators on $ {\cal A}$ have the decomposition property $ (\delta ). $ On the other hand, if ${\cal A} $ is spectrally separable, then for each $ a\in {\cal A}$ and each Banach left $ {\cal A}$-module $ {\cal X} $ the corresponding multiplication operator $ L_a $ on $ {\cal X} $ is super-decomposable. These two statements improve an earlier result of Baskakov.

Authors

  • Janko BračičIMFM
    University of Ljubljana
    Jadranska 19
    1111 Ljubljana, Slovenia
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image