A+ CATEGORY SCIENTIFIC UNIT

Sobolev inequalities for probability measures on the real line

Volume 159 / 2003

F. Barthe, C. Roberto Studia Mathematica 159 (2003), 481-497 MSC: 26D10, 60E15. DOI: 10.4064/sm159-3-9

Abstract

We give a characterization of those probability measures on the real line which satisfy certain Sobolev inequalities. Our starting point is a simpler approach to the Bobkov–Götze characterization of measures satisfying a logarithmic Sobolev inequality. As an application of the criterion we present a soft proof of the Latała–Oleszkiewicz inequality for exponential measures, and describe the measures on the line which have the same property. New concentration inequalities for product measures follow.

Authors

  • F. BartheCNRS, Laboratoire d'Analyse et Mathématiques Appliquées, UMR 8050
    Universités de Marne-la-Vallée et de Paris 12-Val-de-Marne
    Boulevard Descartes, Cité Descartes, Champs sur Marne
    77454 Marne-la-Vallée Cedex 2, France
    e-mail
  • C. RobertoCNRS-Laboratoire d'Analyse et Mathématiques Appliquées, UMR 8050
    Universités de Marne la Vallée et de Paris 12-Val-de-Marne
    Boulevard Descartes, Cité Descartes, Champs sur Marne
    77454 Marne la Vallée Cedex 2, FRANCE
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image