Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Selecting basic sequences in -stable Banach spaces

Volume 159 / 2003

Tadeusz Figiel, Ryszard Frankiewicz, Ryszard A. Komorowski, Czesław Ryll-Nardzewski Studia Mathematica 159 (2003), 499-515 MSC: 46B15, 46B20. DOI: 10.4064/sm159-3-10

Abstract

In this paper we make use of a new concept of \varphi -stability for Banach spaces, where \varphi is a function. If a Banach space X and the function \varphi satisfy some natural conditions, then X is saturated with subspaces that are \varphi -stable (cf. Lemma 2.1 and Corollary 7.8). In a \varphi -stable Banach space one can easily construct basic sequences which have a property P(\varphi ) defined in terms of \varphi (cf. Theorem 4.5).

This leads us, for appropriate functions \varphi , to new results on the existence of unconditional basic sequences with some special properties as well as new proofs of some known results. In particular, we get a new proof of the Gowers dichotomy theorem which produces the best unconditionality constant (also in the complex case).

Authors

  • Tadeusz FigielInstitute of Mathematics
    Polish Academy of Sciences
    Śniadeckich 8
    00-956 Warszawa, Poland
    e-mail
  • Ryszard FrankiewiczInstitute of Mathematics
    Polish Academy of Sciences
    Śniadeckich 8
    00-956 Warszawa, Poland
    e-mail
  • Ryszard A. KomorowskiInstitute of Mathematics
    Wrocław University of Technology
    Wybrzeże Wyspiańskiego 27
    50-370 Wrocław, Poland
    e-mail
  • Czesław Ryll-NardzewskiInstitute of Mathematics
    Wrocław University of Technology
    Wybrzeże Wyspiańskiego 27
    50-370 Wrocław, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image